2025.01.21 - Bloc 3 - TP4 Git

*%

1 Introduction

Git est un logiciel de gestion de versions décentralisé. C’est un logiciel libre créé par Linus
Torvalds,

auteur du noyau Linux, et distribué selon les termes de la licence publique générale GNU
version 2.

En 2016, il s’agit du logiciel de gestion de versions le plus populaire qui est utilisé par plus de
douze

millions de personnes.

— https://fr.wikipedia.org/wiki/Git

Lors cette premiére séance du TPs, nous allons nous initier a I’ utilisation du Git et puis a la
maintenance

d’un répertoire de travail de maniére structurée et ordonnée.

2 Premiers pas avec Git
Git, un logiciel de contrdle de versions

Git [4] est un logiciel de contrdle de versions, il permet de sauvegarder I'historique du contenu

d’un répertoire de travail. Pour ce faire I'utilisateur doit régulierement enregistrer (en créant
une révision ou commit) les modifications apportées au répertoire, il pourra ensuite accéder a
I'historique de toutes les modifications et inspecter I'état du dossier a chaque révision.

Git a la particularité de permettre de créer une copie d’'un répertoire de travail, working copy, et

de synchroniser entre eux plusieurs copies du méme répertoire, permettant la décentralisation

https://fr.wikipedia.org/wiki/Git

du travail.
De plus, Git permet d’utiliser une ou plusieurs branches de développement et de fusionner

entre elles ces branches.

2.1 Création d’un nouveau dép6t

Nous allons d’abord nous intéresser a I'aspect gestionnaire de versions de Git : comment
enregistrer I'historique des modifications apportées a un projet. Pour obtenir un dépdét Git sur
lequel travailler, deux options sont possibles :

création d’'un dépét vide (typiquement utilisé pour commencer un nouveau projet de
développement) ;

copie (clone dans le langage de Git) d’'un dépét existant pour travailler sur cette copie de
travail (typiquement utilisé pour collaborer avec les développeurs d’un projet en cours).

Examinons la premiére option. Git a plusieurs interfaces utilisateur. La plus compléte étant
I'interface en ligne de commande (CLI), nous nous servirons de celle-ci.

Pour créer un nouveau dép6t, on utilise la commande git init monrepo. Cette commande
initialise un dépd6t Git dans le répertoire monrepo (celui-ci est créé s’il n’existe pas). Ce
repertoire contient alors a la fois une version de travail (dans monrepo) et un dépét Git (dans
monrepo/.git).

J’ai créé un nouveau dépd6t en utilisant la commande : git init monrepo

§ git 1nmit monrepo

Initialized empty Git repository in C:/Users/Mewo/monrepo/.git/

Question 2.1.

Initialiser un nouveau dépét Git dans un répertoire sandwich, et créez le fichier burger.txt qui
contient la liste des ingrédients d’'un burger, un ingrédient par ligne.

steak
salade
tomate
cornichon

fromage

J’ai maintenant initialisé un répertoire nommé “sandwich” et créé un fichier “burger.txt” qui
contient la liste des ingrédients demandés.

zandwich
tv Git repository in C:/Users /Mewo/sandwich/.git/

% cd sandwich

% nano burger.txt

2.2 Add et Commit

Figure 1 — git add commit workflow

git commit -a
git add gil cammit
‘ ¢ git reset | l ‘ l
Working copy Index Repositony
git diff gil diff —cached

Pour étre intégrée dans I'historique des révisions du dépdot (pour étre “commitée”) , chaque
modification doit suivre le workflow montré en Figure 1 :

la modification est d’abord effectuée sur la copie de travail ;

elle est ensuite mémorisée dans une aire temporaire nommée index, avec la commande git
add ;
Enfin, ce qui a été placé dans l'index peut étre “commité” avec la commande git commit.

git diff, selon les paramétres d’appel peut étre utilisé pour observer les différences entre les
etats en Figure 1 ;

le format d’affichage est le méme de la command diff -u.

Question 2.2. Vérifiez avec git status I'état dans lequel se trouve votre'dépdt. Vos modifications
(ajout du fichier burger.txt) devraient étre présentes seulement dans la copie de travail.
dwich

§ git status
On branch master

Mo commits wvet

Untracked files:
('git add <fFilex..." to include 1n what will be committed)

nothing added to commit but untracked files present (use "git add” to track)

Question 2.3. Préparez burger.txt pour le commit avec git add burger.txt. Utilisez git status a
nouveau pour vérifier que les modifications ont bien été placées dans I'index. Puis, utiliser git
diff --cached pour observer les différences entre I'index est la derniére version présente dans
I'historique de révision (qui est vide).

5 git add burger t
warning: in the ke will be replaced by CRLF the next time Git touches it

" to unstage)

§ git diff --cached

dhiff —agnt a/burger.txt b/burger.txt
new File mode 100644

index 0000000. . 7e0f26f

— Jdev/mull

+++ b/burger.txt

Question 2.4. Commitez votre modification avec git commit -m "<votre_message_de_commit>".
Le message entre guillemets doubles décrira la nature de votre modification (généralement <
65 characteurs).

Je dois créer un compte et prouver mon identité

- sandwich
$ git commit -m "<Recette pour burger.txt>"
Author identity unknown

1 me who wvou are.

git config --global user.email
t config --global user.name "Yo

in this repository.

address {(got "Mewo@DESKTOP-D3IFAGO. (none) ")

config --global user.name "Bi

config --global user.ema

1 "<La premiére
bfc

100644 burger.

Question 2.5. Exécutez a nouveau git status, pour vérifier que vos modifications ont bien été
commités.

No commits yet

" to unstage)

Question 2.6. Essayez a présent la commande git log pour afficher la liste des changements
effectués dans ce dépdt ; combien y en a-t-il ? Quel est le numéro (un hash cryptographique en
format SHA1) du dernier commit effectué ?

Question 2.7. Créez quelques autres sandwiches hot_dog.txt, jambon_beurre.txt. . .et/ou
modifiez les compositions de sandwiches déja créés, en commitant chaque modification
séparément. Chaque commit doit contenir une et une seule création ou modification de fichier.

Effectuez au moins 5 modifications différentes (et donc 5 commits différents). A chaque étape
essayez les commandes suivantes :

— git diff avant git add pour observer ce que vous allez ajouter a l'index ;
— git diff --cached apreés git add pour observer ce que vous allez committer.

Note : la commande git commit a le méme effet que git add suivie de git commit.

-/sandwich

% nano hot_dog. txt

~/sandwich

1 be replaced by CRLF the next time Git touches 1t

f "jambon_beurre.txt’, LF wi1l be replaced by CRLF the next time Git touches 1t

-/sandwich
$ git diff --cached
hff —ont a/hot_dog.txt b/hot_dog. txt
new T1le mode 100644
andex 0000000. . 2110180
— Jdev/mull
+++ b/hot_dog.txt

chiff —ont a/jambon_beurre.txt b/jambon_beurre.txt
new Tile mode 100644

Index D0D00D000. . 2c38670

— Jjdev/null

+++ b/jambon_beurre.txt

Jambon_beurres"
Jambon_beurres

J’ai rajouté deux autres recettes de sandwich avec les ingrédients a l'intérieur

§ nano Kebab.txt
§ nano Beyrouth.txt

§ git diff--cached
git: "diff--cached’ is not a

§ git add Kebab
warning: in the working copy of 'Kebab.txt', will be replaced by CRLF the next time Git touches 1t

$ git add Beyrouth
warning: in the w 0 of "Beyrouth.txt', LF w111 be replaced by CRLF the next time Git touches 1t

0 |:|:-=_' 1
mode 100644 Ke

En totalité nous nous retrouvons avec plusieurs fichier .txt :
Burger; hot_dog; jambon_beurre; Kebab et Beyrouth
Chacun avec leurs ingrédients

Question 2.8. Regardez a nouveau I'historique des modifications avec git log et vérifiez avec git
status que vous avez tout commité. Git offre plusieurs interfaces, graphiques ou non, pour
afficher I'historique. Essayez les commandes suivantes (gitg et gitk ne sont pas forcément
installés) :

— git log
— qit log --graph --pretty=short
— gitg

— gitk

Author: :
Date: Tue Jan

+0.00

pour burger.twt:

-/sandwich

nothing

se= sandwich: All files - gitk
File Edit View Help

_— master

-=Recette pour hot_dog et Jambon_beurre= Bishop =Bishop@hotmail.fr= 2025-01-21 11:52:45
<=Lapremiére recette pour burger.td= Bishop <Bishop@hotmail fr= 2025-01-21 11:28:58
SHA1 ID: E'Flb?lla4ceS:‘8a3I35'F9c:‘allelje8348ec?49aac4| & = Row| 1] 3|
Find \I/ 4‘ commit |ccntaining: vI
Search | | @ Patch O Tree
(® Diff () Oldversion () New version Lines of context. |3 %] O 1gnore space chang _
S mmmwes A |Beyrouth bt
Follows: Kebab.bi
Precedes:)

<Recette d'Orient>

————————————————————————————————— Beyrouth.txt ---------—-————-—--—-—1--—"-——-—-
new file mode 100644

index 0000000..9pa714d

BB -0,0 +1,3 GE

—————————————————————————————————— EKebab.txt -——-—-—-——-—---—"--"—-"-""-"-"""-"-"""———-

new file mode 100644
index 0000000..fab8bad

* commit T
Author:

2.3 Voyage dans le temps

Question 2.9. Vous voulez changer d’avis entre les différents états de la Figure.1 ? Faites une
modification d’'un ou plusieurs sandwiches, ajoutez-la a I'index avec git add (vérifiez cet ajout
avec git status), mais ne la commitez pas. Exécutez git reset sur le nom de fichier' (oudes noms
de fichiers) que vous avez préparés pour le commit ; vérifiez avec git status le résultat.

burger - Bloc-notes

Fichier Editicn Format Affichage Aide
steak

salade

tomate

cornichon

fromage

pain

Caruttﬁ

~/sandwich

d)

in rking directory)

no changes added to commit (use "git add"” and/or "git commit -a™)

Question 2.10. Votre modification a été « retirée » de I'index. Vous pouvez maintenant la jeter a
la poubelle avec la commande git checkout sur le ou les noms des fichiers modifiés, qui
récupére dans I'historique leurs versions correspondant au tout dernier commit. Essayez cette
commande, et vérifiez avec git status qu’il N’y a maintenant plus aucune modification a
commiter.

git checkout est une commande trés puissante. Elle vous permet de voyager entre différentes
branches (voir plus loin) et aussi de revenir temporairement a une version précédente de votre
copie de travail.

or commit:
" to update wh

no changes added to commit (use "git add"” and/or "git commit -a™)

Question 2.11. Regardez I'historique de votre dépbt avec git log ; choisissez dans la liste un
commit (autre que le dernier). Exécutez git checkout COMMITID ou COMMITID est le numéro

de commit que vous avez choisi. Vérifiez que I'état de vos sandwiches est maintenant revenu
en arriére, au moment du commit choisi. Que dit maintenant git status ?

git log n’affiche plus les commits postérieurs a I'état actuel, sauf si vous ajoutez 'option --all.

Attention, avec git checkout les fichiers de votre copie de travail sont modifiés directement par
Git pour les remettre dans I'état que vous avez demandé. Si les fichiers modifiés sont ouverts
par d’autres programmes (e.g. un éditeur de texte comme Emacs), il faudra les réouvrir pour
observer les modifications.

" to unstage)

B 2hotmai
?1 11:59:23 2

Author:
Date:

Previous HEAD po s la =Re: d'Orients
HEAD is now at abf <l 3 r i pour burger.txts

Question 2.12. Vous pouvez retourner a la version plus récente de votre dépét avec git
checkout master. Vérifiez que cela est bien le cas. Que dit maintenant git status ?
- sandwich

$ git checkout
r.

. to unstage)

4

Git- Cheat sheet [1], [2]

Creation

Historique des commits

Cloner localement un dépét distant
. git clone https://github.com/<remote>

Créer un nouveau dépét local
. g1t init

Afficher tous les commits commencant par les plus ré-
cents

git log

Changements locaux

Fichiers modifiés dans le répertoire de travail.
A utiliser fréquemment !
. Eit status

Integrer Ies changements d un flChIEr au pmchaln com-
mit
. git add <fichier>

Afficher les changements dans le temps pour umfichier

spécifique

git log -p <fichieérx

Responsable du dernier changement d'un fichier o
git blame <fichier>

Mettre a jour et publier

Retlrer un flchler du prochaln commit
. git rm <fichier>

Envayer Ies changements vers Ie dépbt
. Eit commit

Références

Télécharger toutes les modifications depuis REMOTE
et les fusionner ,.? les intégrer 3 HEAD

. git pull <remote> <branch>
Telecharger toutes Ies maodifications depuis REMOTE,
mais ne pas les intégrer & HEAD
. git fetch <remote>
Fusionner et Versionnage
Fusionner une branche dans le HEAD actuelle

. git merge <branch>

[1] git cheat sheet. https://services.github.com/on-demand/downloads/github-git-cheat-sheet.

pdf.

[2] git cheat sheet interactif. http://ndpsoftware.com/git-cheatsheet.html.

[3] git livre. https://git-scm.com/book/en/v2.

[4] git page d’accueil. https://git-scm.com!/.

[5] git tutoriel. https://git-scm.com/docs/gittutorial.

%

https://services.github.com/on-demand/downloads/github-git-cheat-sheet
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/book/en/v2
https://git-scm.com/
https://git-scm.com/docs/gittutorial

