
2025.01.21 - Bloc 3 - TP4 Git
**

1 Introduction
Git est un logiciel de gestion de versions décentralisé. C’est un logiciel libre créé par Linus
Torvalds,

auteur du noyau Linux, et distribué selon les termes de la licence publique générale GNU
version 2.

En 2016, il s’agit du logiciel de gestion de versions le plus populaire qui est utilisé par plus de
douze

millions de personnes.

— https://fr.wikipedia.org/wiki/Git

Lors cette première séance du TPs, nous allons nous initier à l’ utilisation du Git et puis à la
maintenance

d’un répertoire de travail de manière structurée et ordonnée.

2 Premiers pas avec Git
Git, un logiciel de contrôle de versions

Git [4] est un logiciel de contrôle de versions, il permet de sauvegarder l’historique du contenu

d’un répertoire de travail. Pour ce faire l’utilisateur doit régulièrement enregistrer (en créant

une révision ou commit) les modifications apportées au répertoire, il pourra ensuite accéder à

l’historique de toutes les modifications et inspecter l’état du dossier à chaque révision.

Git a la particularité de permettre de créer une copie d’un répertoire de travail, working copy, et

de synchroniser entre eux plusieurs copies du même répertoire, permettant la décentralisation

Yohan Ranson

https://fr.wikipedia.org/wiki/Git

du travail.

De plus, Git permet d’utiliser une ou plusieurs branches de développement et de fusionner

entre elles ces branches.

2.1 Création d’un nouveau dépôt
Nous allons d’abord nous intéresser à l’aspect gestionnaire de versions de Git : comment
enregistrer l’historique des modifications apportées à un projet. Pour obtenir un dépôt Git sur
lequel travailler, deux options sont possibles :

Examinons la première option. Git a plusieurs interfaces utilisateur. La plus complète étant
l’interface en ligne de commande (CLI), nous nous servirons de celle-ci.

Pour créer un nouveau dépôt, on utilise la commande git init monrepo. Cette commande
initialise un dépôt Git dans le répertoire monrepo (celui-ci est créé s’il n’existe pas). Ce
repertoire contient alors à la fois une version de travail (dans monrepo) et un dépôt Git (dans
monrepo/.git).

Question 2.1.
Initialiser un nouveau dépôt Git dans un répertoire sandwich, et créez le fichier burger.txt qui
contient la liste des ingrédients d’un burger, un ingrédient par ligne.

steak

salade

tomate

cornichon

fromage

1. création d’un dépôt vide (typiquement utilisé pour commencer un nouveau projet de
développement) ;

2. copie (clone dans le langage de Git) d’un dépôt existant pour travailler sur cette copie de
travail (typiquement utilisé pour collaborer avec les développeurs d’un projet en cours).

J’ai créé un nouveau dépôt en utilisant la commande : git init monrepo

Yohan Ranson

2.2 Add et Commit
Figure 1 – git add commit workflow

Pour être intégrée dans l’historique des révisions du dépôt (pour être “commitée”) , chaque
modification doit suivre le workflow montré en Figure 1 :

git diff, selon les paramètres d’appel peut être utilisé pour observer les différences entre les
états en Figure 1 ;

le format d’affichage est le même de la command diff -u.

J’ai maintenant initialisé un répertoire nommé “sandwich” et créé un fichier “burger.txt” qui
contient la liste des ingrédients demandés.

1. la modification est d’abord effectuée sur la copie de travail ;
2. elle est ensuite mémorisée dans une aire temporaire nommée index, avec la commande git

add ;
3. Enfin, ce qui a été placé dans l’index peut être “commité” avec la commande git commit.

Yohan Ranson

Question 2.2. Vérifiez avec git status l’état dans lequel se trouve votre dépôt. Vos modifications
(l’ajout du fichier burger.txt) devraient être présentes seulement dans la copie de travail.

Question 2.3. Préparez burger.txt pour le commit avec git add burger.txt. Utilisez git status à
nouveau pour vérifier que les modifications ont bien été placées dans l’index. Puis, utiliser git
diff --cached pour observer les différences entre l’index est la dernière version présente dans
l’historique de révision (qui est vide).

Question 2.4. Commitez votre modification avec git commit -m "<votre_message_de_commit>".
Le message entre guillemets doubles décrira la nature de votre modification (généralement ≤
65 characteurs).

Je dois créer un compte et prouver mon identité

Yohan Ranson

Question 2.5. Exécutez à nouveau git status, pour vérifier que vos modifications ont bien été
commités.

Question 2.6. Essayez à présent la commande git log pour afficher la liste des changements
effectués dans ce dépôt ; combien y en a-t-il ? Quel est le numéro (un hash cryptographique en
format SHA1) du dernier commit effectué ?

Question 2.7. Créez quelques autres sandwiches hot_dog.txt, jambon_beurre.txt. . .et/ou
modifiez les compositions de sandwiches déjà créés, en commitant chaque modification
séparément. Chaque commit doit contenir une et une seule création ou modification de fichier.

J’ai donc créé mon nom d’utilisateur ainsi qu’une adresse mail fictive

Yohan Ranson

Effectuez au moins 5 modifications différentes (et donc 5 commits différents). À chaque étape
essayez les commandes suivantes :

— git diff avant git add pour observer ce que vous allez ajouter à l’index ;

— git diff --cached après git add pour observer ce que vous allez committer.

Note : la commande git commit a le même effet que git add suivie de git commit.

J’ai rajouté deux autres recettes de sandwich avec les ingrédients à l’intérieur

Yohan Ranson

En totalité nous nous retrouvons avec plusieurs fichier .txt :

Burger; hot_dog; jambon_beurre; Kebab et Beyrouth

Chacun avec leurs ingrédients

Question 2.8. Regardez à nouveau l’historique des modifications avec git log et vérifiez avec git
status que vous avez tout commité. Git offre plusieurs interfaces, graphiques ou non, pour
afficher l’historique. Essayez les commandes suivantes (gitg et gitk ne sont pas forcément
installés) :

— git log

— git log --graph --pretty=short

— gitg

— gitk

Yohan Ranson

Yohan Ranson

Yohan Ranson

2.3 Voyage dans le temps

Question 2.9. Vous voulez changer d’avis entre les différents états de la Figure 1 ? Faites une
modification d’un ou plusieurs sandwiches, ajoutez-la à l’index avec git add (vérifiez cet ajout
avec git status), mais ne la commitez pas. Exécutez git reset sur le nom de fichier (ou les noms
de fichiers) que vous avez préparés pour le commit ; vérifiez avec git status le résultat.

Question 2.10. Votre modification a été « retirée » de l’index. Vous pouvez maintenant la jeter à
la poubelle avec la commande git checkout sur le ou les noms des fichiers modifiés, qui
récupère dans l’historique leurs versions correspondant au tout dernier commit. Essayez cette
commande, et vérifiez avec git status qu’il n’y a maintenant plus aucune modification à
commiter.

git checkout est une commande très puissante. Elle vous permet de voyager entre différentes
branches (voir plus loin) et aussi de revenir temporairement à une version précédente de votre
copie de travail.

Question 2.11. Regardez l’historique de votre dépôt avec git log ; choisissez dans la liste un
commit (autre que le dernier). Exécutez git checkout COMMITID où COMMITID est le numéro

Yohan Ranson

de commit que vous avez choisi. Vérifiez que l’état de vos sandwiches est maintenant revenu
en arrière, au moment du commit choisi. Que dit maintenant git status ?

git log n’affiche plus les commits postérieurs à l’état actuel, sauf si vous ajoutez l’option --all.

Attention, avec git checkout les fichiers de votre copie de travail sont modifiés directement par
Git pour les remettre dans l’état que vous avez demandé. Si les fichiers modifiés sont ouverts
par d’autres programmes (e.g. un éditeur de texte comme Emacs), il faudra les réouvrir pour
observer les modifications.

Question 2.12. Vous pouvez retourner à la version plus récente de votre dépôt avec git
checkout master. Vérifiez que cela est bien le cas. Que dit maintenant git status ?

Yohan Ranson

4 Git- Cheat sheet [1], [2]

Références

[1] git cheat sheet. https://services.github.com/on-demand/downloads/github-git-cheat-sheet.

pdf.

[2] git cheat sheet interactif. http://ndpsoftware.com/git-cheatsheet.html.

[3] git livre. https://git-scm.com/book/en/v2.

[4] git page d’accueil. https://git-scm.com/.

[5] git tutoriel. https://git-scm.com/docs/gittutorial.

**

Yohan Ranson

https://services.github.com/on-demand/downloads/github-git-cheat-sheet
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/book/en/v2
https://git-scm.com/
https://git-scm.com/docs/gittutorial

